M.MATH LINEAR ALGEBRA

100 Points

Notes.

(a) Begin each answer on a separate sheet and ensure that the answers to all the parts to a question are arranged contiguously.

- (b) Assume only those results that have been proved in class. All other steps should be justified.
- (c) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers \mathbb{C} = complex numbers.
- (d) All vector spaces are assumed to be finite dimensional, unless mentioned otherwise.
- 1. [12 points] Let $T: V \to V$ be a linear map of vector spaces and let $W \subset V$ be a T-invariant subspace.
 - (i) Describe how T induces a natural linear map $\overline{T}: V/W \to V/W$.
 - (ii) Prove or disprove: If $T|_{W}$ is diagonalizable and \overline{T} is diagonalizable then T is diagonalizable.

2. [12 points] Let F be a field, $X = (x_{ij})$ an $m \times n$ matrix over F, and let $a_1, \ldots, a_m, b_1, \ldots, b_n$ be elements of F. Let $Y = (y_{ij})$ be the $m \times n$ matrix given by $y_{ij} = x_{ij} + a_i + b_j$. Prove that $|\operatorname{rank}(X) - \operatorname{rank}(Y)| \le 2$.

- 3. [12 points] Let $V_1 \xrightarrow{T} V_2 \xrightarrow{S} V_3$ be linear maps of vector spaces.
 - (i) Define what it means for the above sequence of maps to be exact.
 - (ii) If ST = 0, prove that $rank(S) + rank(T) \le \dim(V_2)$.
- 4. [12 points]
 - (i) Given unit vectors u_1, \ldots, u_m in \mathbb{R}^n , show that there exists a pair u_i, u_j (with $i \neq j$) such that $u_i \cdot u_j \geq \frac{-1}{m-1}$.
 - (ii) Let $v_1, v_2, v_3 \in \mathbb{R}^n$ be nonzero vectors and let θ_{ij} be the angle between v_i and v_j . Show that $\min(\theta_{12}, \theta_{23}, \theta_{31}) \leq 2\pi/3$ with equality iff v_1, v_2, v_3 are coplanar with $\theta_{12} = \theta_{23} = \theta_{31}$.

5. [28 points] TRUE or FALSE: In each of the following statements, decide whether it is true or false and give brief explanations for your answer. You will get credit only if your explanation is correct.

- (i) If A is a symmetric invertible matrix with coefficients in \mathbb{C} , then $A = Q^t Q$ for some invertible matrix Q over \mathbb{C} .
- (ii) If A is a Hermitian symmetric invertible matrix, then $A = Q^*Q$ for some invertible matrix Q over \mathbb{C} .
- (iii) If A, B are real symmetric matrices having the same characteristic polynomial, then A is similar to B over \mathbb{R} .
- (iv) If $\{v_i\}_{i=1}^n$ is an arbitrary basis of a Hermitian space (V, \langle , \rangle) and $T: V \to V$ is an isomorphism such that $\langle v_i, v_j \rangle = \langle Tv_i, Tv_j \rangle$ then T is unitary.

6. [12 points] Classify up to similarity, all 5×5 matrices over \mathbb{C} whose minimal polynomial is given by $p(t) = (t+1)(t-1)^2$.

7. [12 points] Let F be a field and let $a_0, \ldots, a_{n-1} \in F$. Give an example of an $n \times n$ matrix A over F such that $A^n + a_{n-1}A^{n-1} + \cdots + a_0$ equals the zero matrix.